Ischemia activates actin depolymerizing factor: role in proximal tubule microvillar actin alterations.

نویسندگان

  • Niles Schwartz
  • Melanie Hosford
  • Ruben M Sandoval
  • Mark C Wagner
  • Simon J Atkinson
  • James Bamburg
  • Bruce A Molitoris
چکیده

Apical membrane of renal proximal tubule cells is extremely sensitive to ischemia, with structural alterations occurring within 5 min. These changes are felt secondary to actin cytoskeletal disruption, yet the mechanism responsible is unknown. Actin depolymerizing factor (ADF), a 19-kDa actin-binding protein, has recently been shown to play an important role in regulation of actin filament dynamics. Because ADF is known to mediate pH-dependent F-actin binding, depolymerization, and severing, and because ADF activation occurs by dephosphorylation, we questioned whether ADF played a role in microvilli microfilament disruption during ischemia. To test our hypothesis, we induced renal ischemia in the rat with the clamp model. Initial immunofluorescence and Western blot studies on cortical tissue documented the presence of ADF in proximal tubule cells. Under physiological conditions, ADF was distributed homogeneously throughout the cytoplasm, primarily in the Triton X-100-soluble fraction, and both phosphorylated (pADF) and nonphosphorylated forms were identified. During ischemia, marked alterations occurred. Intraluminal vesicle/bleb structures contained extremely high concentrations of ADF along with G-actin, but not F-actin. Western blot showed a rapidly occurring duration-dependent dephosphorylation of ADF. At 0-30 min of ischemia, total ADF levels were unchanged, whereas pADF decreased significantly to 72% and 19% of control levels, at 5 and 15 min, respectively. Urine collected under physiological conditions did not contain ADF or actin, whereas urine collected after 30 min of ischemia contained both ADF and actin. Reperfusion was associated with normalization of cellular pADF levels, pADF intracellular distribution, and repair of apical microvilli. These data suggest that activation of ADF during ischemia via dephosphorylation is, in part, responsible for apical actin disruption resulting in microvillar destruction and formation of intraluminal vesicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells.

Breakdown of proximal tubule cell apical membrane microvilli is an early-occurring hallmark of ischemic acute renal failure. Intracellular mechanisms responsible for these apical membrane changes remain unknown, but it is known that actin cytoskeleton alterations play a critical role in this cellular process. Our laboratory previously demonstrated that ischemia-induced cell injury resulted in d...

متن کامل

Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments.

Ischemic-induced cell injury results in rapid duration-dependent actin-depolymerizing factor (ADF)/cofilin-mediated disruption of the apical microvilli microfilament cores. Because intestinal microvillar microfilaments are bound and stabilized in the terminal web by the actin-binding protein tropomyosin, we questioned whether a protective effect of tropomyosin localization to the terminal web o...

متن کامل

Redistribution of villin to proximal tubule basolateral membranes after ischemia and reperfusion.

After ischemia and reperfusion, severe alterations in the cytoskeletal organization of renal tubular epithelial cells have been reported. These effects, accompanied by a modification in the polarized distribution of some membrane transport proteins, are especially evident in the proximal tubule. In normal proximal tubule cells, actin is concentrated in apical brush border microvilli, along with...

متن کامل

Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion.

Disruption of the actin cytoskeleton in proximal tubule cells is a key pathophysiological factor in acute renal failure. To investigate dynamic alterations of the actin cytoskeleton in live proximal tubule cells, LLC-PK(10) cells were transfected with an enhanced yellow fluorescence protein (EYFP)-actin construct, and a clone with stable EYFP-actin expression was established. Confluent live cel...

متن کامل

Coincident microvillar actin bundle disruption and perinuclear actin sequestration in anoxic proximal tubule.

The present studies investigated acute disruption of microvillar actin cytoskeleton and actin association with other cytoskeletal components in ATP-depleted rabbit proximal tubular cells. Video-enhanced differential-interference contrast microscopy and confocal microscopy were used to follow the fate of F-actin during the disruption of microvilli. Within individual cells, all microvilli collaps...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 276 4  شماره 

صفحات  -

تاریخ انتشار 1999